## organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Xiao-Fang Li,\* Ya-Qing Feng, Bo Gao and Nan Li

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: lxf7212@yahoo.com.cn

#### **Key indicators**

Single-crystal X-ray study T = 293 KMean  $\sigma(\text{C}-\text{C}) = 0.007 \text{ Å}$ Disorder in solvent or counterion R factor = 0.068 wR factor = 0.232 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# 4,11-Bis(4-methoxyphenyl)-3,10-bis(2,6-dichlorophenyl)-1,8-dioxa-2,9-diazadispiro[4.1.4.3]tetradeca-2,9-dien-6-one\_chloroform\_methanol (2/2/1)

The title compound,  $C_{36}H_{28}Cl_4N_2O_5$ ·CHCl<sub>3</sub>·0.5CH<sub>4</sub>O, was synthesized by the intermolecular [3+2]-cycloaddition of 2,6dichlorobenzonitrile oxide and 2,6-bis(4-methoxybenzylidene)cyclohexanone. There are three rings linked by two spiro-C atoms. The cyclohexane ring has a chair conformation and the two five-membered isoxazoline rings have envelope conformations. Received 8 September 2003 Accepted 12 September 2003 Online 7 October 2003

#### Comment

Spiro-compounds represent an important class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi *et al.*, 1991; James *et al.*, 1991). 1,3-Dipolar cycloaddition reactions are important processes for the construction of spiro-compounds (Caramella & Grunanger, 1984). In this paper, the structure of the title compound, (I), is reported



Compound (I) was synthesized by the intermolecular [3+2]cycloaddition of 2,6-dichlorobenzonitrile oxide and 2,6-bis(4methoxybenzylidene)cyclohexanone. The molecular structure of the main residue of (I) is illustrated in Fig. 1. There are two spiro junctions in the molecule, which contains two isoxazoline rings and a cyclohexane ring. The two isoxazoline rings adopt envelope conformations, while the cyclohexane ring has a chair conformation. The structure of 4,11-bis(4-chlorophenyl)-3,10-bis(2,6-dichlorophenyl)-1,8-dioxa-2,9-diazadispiro[4.1.4.-3]tetradeca-2,9-dien-6-one 0.75-hydrate has been reported previously (Li *et al.*, 2003).

### **Experimental**

A mixture of 2,6-dichlorobenzonitrile oxide (3 mmol) and 2,6-bis(4methoxybenzylidene)cyclohexanone (1.5 mmol) in dry benzene (30 ml) was heated under reflux for 36 h. After evaporation of the solvent, the residue was separated by column chromatography (silica

 $\odot$  2003 International Union of Crystallography Printed in Great Britain – all rights reserved



#### Figure 1

The molecular structure of (I), drawn with 30% probability ellipsoids. H atoms have been omitted for clarity.

gel, petroleum ether-ethyl acetate, 5:1) to give the title compound, (I) (m.p. 521–522 K). IR (KBr, cm<sup>-1</sup>): 1734 (C=O), 1610, 1581 (C=N, C=C); <sup>1</sup>H NMR (CDCl<sub>3</sub>, p.p.m.): 1.26 (4H, m), 1.61 (2H, m), 3.73 (6H, s), 6.18 (2H, s), 6.81-7.35 (14H, m). Compound (I) (20 mg) was dissolved in a mixture of chloroform and methanol (15 ml), and the resulting solution was kept at room temperature for 10 d, giving colorless single crystals of (I) by evaporation.

#### Crystal data

| C <sub>36</sub> H <sub>28</sub> Cl <sub>4</sub> N <sub>2</sub> O <sub>5</sub> ·CHCl <sub>3</sub> ·0.5CH <sub>4</sub> O | Z = 2                                     |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| $M_r = 845.79$                                                                                                         | $D_x = 1.443 \text{ Mg m}^{-3}$           |
| Triclinic, P1                                                                                                          | Mo $K\alpha$ radiation                    |
| a = 11.293 (3)  Å                                                                                                      | Cell parameters from 956                  |
| b = 12.955 (4) Å                                                                                                       | reflections                               |
| c = 15.027 (4) Å                                                                                                       | $\theta = 3.5 - 23.5^{\circ}$             |
| $\alpha = 114.946 \ (4)^{\circ}$                                                                                       | $\mu = 0.56 \text{ mm}^{-1}$              |
| $\beta = 96.953 \ (5)^{\circ}$                                                                                         | T = 293 (2) K                             |
| $\gamma = 96.393 \ (5)^{\circ}$                                                                                        | Block, colorless                          |
| $V = 1946.2 (10) \text{ Å}^3$                                                                                          | $0.38 \times 0.36 \times 0.28 \text{ mm}$ |
|                                                                                                                        |                                           |

Data collection

| Bruker SMART CCD area-detector         | 6824 independent reflections                              |
|----------------------------------------|-----------------------------------------------------------|
| diffractometer                         | 4415 reflections with $I > 2\sigma(I)$                    |
| $\varphi$ and $\omega$ scans           | $R_{\rm int} = 0.019$                                     |
| Absorption correction: multi-scan      | $\theta_{\rm max} = 25.0^{\circ}$                         |
| (SADABS; Bruker, 1997)                 | $h = -13 \rightarrow 13$                                  |
| $T_{\min} = 0.732, \ T_{\max} = 0.856$ | $k = -13 \rightarrow 15$                                  |
| 10 073 measured reflections            | $l = -17 \rightarrow 10$                                  |
| Refinement                             |                                                           |
| Refinement on $F^2$                    | H-atom parameters constrained                             |
| $R[F^2 > 2\sigma(F^2)] = 0.068$        | $w = 1/[\sigma^2(F_a^2) + (0.084P)^2]$                    |
| $wR(F^2) = 0.232$                      | where $P = (F_{a}^{2} + 2F_{c}^{2})/3$                    |
| S = 1.03                               | $(\Delta/\sigma)_{\rm max} < 0.001$                       |
| 6824 reflections                       | $\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 480 parameters                         | $\Delta \rho_{\rm min} = -0.77 \text{ e} \text{ Å}^{-3}$  |

The positions of the C and O atoms of the methanol molecule were found in a difference Fourier map and refined with occupancies fixed at 0.5. H atoms were positioned geometrically with C-H = 0.93-0.98 Å and refined in a riding model with  $U_{iso}(H) = 1.2U_{eq}(carrier)$ .

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

### References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.

James, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137-1140.

Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 47, 6617-6622.

Li, X.-F., Feng, Y.-Q., Zhuang, J.-P. & Hu, X.-F. (2003). Acta Cryst. E59, 0247-0249.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.